Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks

نویسندگان

چکیده

Markov chain Monte Carlo (MCMC) methods have not been broadly adopted in Bayesian neural networks (BNNs). This paper initially reviews the main challenges sampling from parameter posterior of a network via MCMC. Such culminate to lack convergence posterior. Nevertheless, this shows that nonconverged chain, generated MCMC space network, can yield marginalization valuable predictive distribution output network. Classification examples based on multilayer perceptrons showcase highly accurate distributions. The postulate limited scope for developments BNNs is partially valid; an asymptotically exact seems less plausible, yet tenable research avenue.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov chain Monte Carlo for Bayesian inference

The chord length transform (CLT) is a useful tool to analyze fibre structures. Assuming e.g. arandom process of straight fibres then a realization of such a process can be observed in a binaryimage. The CLT maps to each point in the foreground of a binary image and to each direction thelength of the related chord, where the chord is the connecting part of a line in the direction...

متن کامل

Bayesian Computation Via Markov Chain Monte Carlo

A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields over 100,000 hits, and a general web search on Google yields 1.7 million hits. These results stem largely from the ubiquitous use of these algorithms in modern computational statistics, as we shall now describe. MCMC algorithms are used to solve problems in many scientific fields, including physics (where many MCM...

متن کامل

Bayesian Generalised Ensemble Markov Chain Monte Carlo

Bayesian generalised ensemble (BayesGE) is a new method that addresses two major drawbacks of standard Markov chain Monte Carlo algorithms for inference in highdimensional probability models: inapplicability to estimate the partition function and poor mixing properties. BayesGE uses a Bayesian approach to iteratively update the belief about the density of states (distribution of the log likelih...

متن کامل

Bayesian Inference for PCFGs via Markov Chain Monte Carlo

This paper presents two Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference of probabilistic context free grammars (PCFGs) from terminal strings, providing an alternative to maximum-likelihood estimation using the Inside-Outside algorithm. We illustrate these methods by estimating a sparse grammar describing the morphology of the Bantu language Sesotho, demonstrating that with sui...

متن کامل

Adaptive Markov chain Monte Carlo for Bayesian Variable Selection

We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 2022

ISSN: ['2168-8745', '0883-4237']

DOI: https://doi.org/10.1214/21-sts840